Neurotoxic Sleight of Fang: Differential Antivenom Efficacy Against Mamba (Dendroaspis spp.) Venom Spastic-Paralysis Presynaptic/Synaptic vs. Flaccid-Paralysis Postsynaptic Effects

 

By TimVickers - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=11360973

Neurotoxic Sleight of Fang: Differential Antivenom Efficacy Against Mamba (Dendroaspis spp.) Venom Spastic-Paralysis Presynaptic/Synaptic vs. Flaccid-Paralysis Postsynaptic Effects

Abstract

Mamba (Dendroaspis species) snakebites are critical medical emergencies across sub-Saharan Africa. Envenomings can result in the rapid onset of complex neurotoxic symptoms, often leading to high rates of mortality without timely intervention with antivenom. The ancestral state of mambas is the green coloured, forest dwelling type, with the tan/grey coloured, savannah dwelling D. polylepis (Black Mamba) representing a derived state both ecologically and morphologically. However, it has not been tested whether these changes are paralleled by changes in venom biochemistry or if there are differential molecular evolutionary patterns. To fill these knowledge gaps, this study evaluated the neurotoxic effects of all Dendroaspis species venoms using the chick biventer cervicis nerve-muscle preparation, assessed the neutralizing efficacy of three antivenoms commercially available in Africa, and reconstructed the molecular evolutionary history of the toxin types to ascertain whether some were unique to particular species. All Dendroaspis venoms demonstrated potent flaccid-paralysis due to postsynaptic neurotoxicity. The only exception was D. angusticeps venom, which conversely exhibited spastic-paralysis due to presynaptic/synaptic neurotoxicity characterised by potentiation of acetylcholine presynaptic release and sustained synaptic activity of this neurotransmitter. Antivenom efficacy varied significantly. All three antivenoms neutralized to some degree the flaccid-paralysis postsynaptic effects for all species, with D. viridis venom being the best neutralized, and this pattern extended to all the antivenoms. However, neutralisation of flaccid-paralysis postsynaptic effects unmasked spastic-paralysis presynaptic/synaptic neurotoxicity within non-angusticeps venoms. Spastic-paralysis presynaptic effects were poorly neutralized for all species by all antivenoms, consistent with prior clinical reports of poor neutralisation of spastic-paralytic effects. Geographic variation in D. polylepis venom was evident for the relative neutralisation of both spastic-paralysis presynaptic/synaptic and flaccid-paralysis postsynaptic/synaptic neurotoxic pathophysiological effects, with differential neutralization capabilities noted between the Kenyan and South African populations studied. Molecular phylogenetic analyses confirmed spastic-paralysis and flaccid- paralysis toxins to be a trait that emerged in the Dendroaspis last common ancestor, with all species sharing all toxin types. Therefore, differences in venoms’ pathophysiological actions between species are due to differential expression of toxin isoforms rather than the evolution of species-specific novel toxins. Our findings highlight the synergistic nature of flaccid-paralysis postsynaptic and spastic-paralysis presynaptic/synaptic toxins, while contributing significant clinical and evolutionary knowledge of Dendroaspis venoms. These data are crucial for the continued development of more effective therapeutic interventions to improve clinical outcomes and for evidence-based design of clinical management strategies for the envenomed patient.


Jones, L., Lay, M., Seneci, L., Hodgson, W. C., Koludarov, I., Senoner, T., Soria, R., & Fry, B. G. (2025). Neurotoxic Sleight of Fang: Differential Antivenom Efficacy Against Mamba (Dendroaspis spp.) Venom Spastic-Paralysis Presynaptic/Synaptic vs. Flaccid-Paralysis Postsynaptic Effects. Toxins, 17(10), 481. https://doi.org/10.3390/toxins17100481